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An analytical steady-state theory of the detonation ‘diameter effect ’ is presented. This 
theory, which includes the off-axis flow, is a generalization of the Wood-Kirkwood 
analysis. When the state dependence of the reaction rate is stronger than that of the 
product of the sound speed squared and the flow divergence, detonation failure can 
occur. The leading term in the extrapolation of the detonation velocity to infinite 
charge size is quadratic in the inverse charge size and not linear as popularly believed. 
When calibrated to the detonation velocity us. charge-size data, the theory reproduces 
the limited amount of experimental shock loci to a high degree of accuracy. 

1. Introduction 
It is experimentally known that a detonation wave in a high-density explosive 

propagating along the axis of a right-circular cylinder (rate stick) reaches a steady- 
state velocity that is a function of both the cylinder radius and the properties of the 
inert material confining the explosive cylinder. As the radius of the explosive cylinder, 
r*, is decreased the detonation velocity decreases until the radius reaches a critical 
value, r f ,  below which no steady-state detonation is observed. This phenomenon, 
which is called the detonation diameter effect, was recently reviewed (Campbell & 
Engelke 1976). They showed that, for twelve heterogeneous high-density solid 
explosives,t confined by ambient air, and for two liquid explosives, one confined in 
brass, the other in glass, the data could be fitted to the relation 

(1.1) 

where D is the detonation velocity a t  radius r ,  DCi is the one-dimensional steady-state 
(Chapman-Jouguet) detonation velocity, and A and re are fitting parameters. For 
most of the solid explosives they examined 

I = D/D, = 1 - A/(r*  - rc). 

r, = 0.88rf, (1.2) 

so that the diameter effect (Zvs. r*--l) is downward concave. Near failure, the slope is 
steep and 7. = O(O.9). For the liquid explosives, the diameter effect is linear (re 21 0) and 
2 = O(O.99) a t  failure. The notable exceptions to  equation (1.2) were the TATB 
(triamino-trinitrobenzene) formulations a t  about 98 % of theoretical maximum 
density. The TATB formulations had zero or slightly negative values of re so that ( 1.1) 
gives a linear diameter effect for them, similar to  that observed for liquid explosives. 
Since liquid explosives are throught to fail because of a failure-wave-type instability, 

t These include HMX, RDX, TNT and TATB based explosives and HMX/TNT and 
RDX/TNT mixtures. 
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Campbell & Engelke postulated that the failure mechanism is different for explosives 
with a downward concave diameter effect from those with a linear diameter effect. 
We speculate that a downward concave diameter effect is obtained when it is no 
longer possible to construct a two-dimensional steady-state solution, as discussed by 
Tsug6 et al. (1970); a linear diameter effect is obtained when a two-dimensionalsteady- 
state solution is unstable to small fluctuations for 1 = O(O.99). Clearly, detonation in a 
rate stick composed of a heterogeneous explosive can strictly be neither two- 
dimensional nor steady-state. However, experimentally, it  is known that, after an 
initial transient phase, the detonation velocity is relatively constant and that the 
shock shape is symmetrical and reproducible. Therefore, as a first approximation to the 
real behaviour, we might assume that the process is steady-state and two-dimensional. 
Considering that such a large number of diameter effect curves are similar (downward 
concave) and that far from failure even detonations in liquid explosives probably 
propagate via a quasi steady-state mode, it would be useful to have a theory for steady- 
state two-dimensional detonation in high-density explosives. When appropriately 
calibrated, such a theory could provide some information about the heat release pro- 
cesses that support the detonation. 

A number of theoretical studies of this phenomenon have been made. Common to 
all of these is the assumption that the streamlines diverge from the head-on direction, 
and as a consequence act as a mass sink in the one-dimensional continuity equation. 
Jones (1947) developed an approximate nozzle theory for the problem and related the 
area divergence to the charge size. Eyring et al. (1949) based their theory on the 
observation that the shock is curved for most solid high explosives. Using the continuity 
of mass for a spherical system, they derived a relation between the detonation velocity 
and shock curvature. Using this relation, they did a graphical construction for the 
shock in a cylindrical rate stick. For an uncased charge, this gives them 

(1.3) 
where z* is the one-dimensional reaction-zone length. Both of these theories are, a t  
best, only semi-quantitative. However, they define the two fundamental models that 
all subsequent work has followed. 

Wood & Kirkwood (1954) took the assumption of a curved shock front, introduced 
by Eyring, and added the assumption that the radius of curvature of the shock was 
large compared with the reaction-zone length. Expanding the solution in a formal 
power series in ( x * / & ,  they showed that to O ( z * / s )  (i.e. all terms up to and including 
order one in the expansion are retained) 

where 2 is the central radius of curvature of the shock, and p is  an available constant. 
Unlike the previous work, equation (1.4) is rigorous. 

More recently, Tsug6 et a2. (1970) applied the nozzle theory to gaseous detonation, 
where the assumption of a flat shock is a reasonable one. Studying the detonation of 
H,/O, confined by an inert gas, they calculated the channel area in the nozzle in the 
limit that the confining inert could be treated with the Newton hypersonic approxi- 
mation (Hayes & Probstein 1966). They then calculated the diameter effect for H,/02, 
including the detonation-failure state and a second low-velocity detonation mode. 

The purpose of this paper is to present a relatively complete description of the 
diameter effect for high-density explosives. Since detonation in these materials is 

.! = 1 - 0*5x*/r*, 

1 - 1-pz*/8, (1.4) 
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FIQURE 1. A schematic representation of a two-dimensional steady-state 
detonation in a high-density explosive. 

characterized by curved shocks, nozzle theories are automatically excluded. What we 
will do is show how the Wood-Kirkwood theory can be extended so as to permit one to 
calculate the diameter effect, the shock locus, and the detonation-failure state. 

In  $2,  we present the governing differential equations and boundary conditions. We 
develop the generalized Wood-Kirkwood approximation to the radial flow and use it 
to get the basic governing equation for the problem [equation (3.14)], in $3 .  In $ 4, we 
solve equation (3.14) in conjunction with a special heat release law to get a simple 
model of steady-state two-dimensional detonation [equation (4.8)]. We discuss the 
features of the model, including the form of the diameter effect [equation (5.8)] and 
shock locus [equation (5.1 l)], in $ 5. In $ 6 ,  we show that the model is in good agreement 
with experimental data on two-dimensional detonation. 

2. Steady-state flow equations 
Figure 1 shows a schematic representation of the flow problem we wish to consider. 

A two-dimensional detonation, consisting of a reaction zone preceded by a curved 
shock, propagates into a quiescent explosive. The chemical reaction, which is initiated 
by the shock, goes to completion at or beneath the locus of sonic flow. The pressure 
generated by the reaction deflects the confining inert, thereby causing the streamlines 
in the explosive to deflect by an amount 8~ Iu,+/u,+I at the intersection of the shock 
with the confining inert. We assume that the entire process is steady in the reference 
frame of the detonation shock, and that the Euler equations provide an adequate 
description of the mechanics. 

For convenience, we assume that our co-ordinate system is attached to the shock 
which travels with velocity Di. With these assumptions, the material derivative is 
d / d t  = Q .  V - D a /&  so that the Euler equations become 

v.  (pu) = 0, (2.1) 

(2.2) 
1 

P 
u.vu+-VP = 0, 

(2.3) 
P 

u.VE--u.Vp = 0, 
P2 



198 J .  B. Bdzil 

where the independent variables are (2, r )  and the dependent variables p, u ,  (a), P ,  E,  
are the density, shock (laboratory) centred particle velocity, pressure, and specific 
internal energy, respectively. If we assume that the detonation is driven by a single 
chemical reaction (or a set of reactions which combine to give one effective forward 
exothermic heat release) and that the equation of state of the reactants and products 
is the same, then 

(2 .4 )  

where q is the heat of detonation, and h is the reaction progress variable, 

E = e(P, P )  - qh, 

O < A < l ,  

with h = 0 corresponding to unreacted material and where h = 1 marks the end of the 
reaction zone. 

We begin by rewriting (2 .1 )  in a form more suitable for analysis. Substituting (2 .4 )  
into (2 .3 )  and then eliminating u. VP with (2 .2 ) ,  gives 

~ p u . V u 2 + c 2 u . V p  = -&/(ae/aP), 

where R is the steady-state reaction rate 

u.Vh = R. 
Using this equation to eliminate u . V p  in (2 .1 )  produces (2.1) in the desired form 

where 01 equals zero (one) corresponds to plane (cylindrical) symmetry, c is the sound 
speed at fixed A, and s2 is the vorticity of the flow 

Equation (2 .5)  is a particularly convenient form for calculations since it explicitly 
displays how the two-dimensional effects modify the one-dimensional equation. In  the 
absence of any two-dimensionality, only the first terms of both the right- and left- 
hand side of equation (2 .5 )  appear. They correspond, respectively, to the rate of 
chemical energy addition and the longitudinal propagation of acoustic energy and 
convection of kinetic energy. When the flow is two-dimensional, the longitudinal 
transport of energy is modified to include the convection of the added radial kinetic 
energy 

and energy is diverted from longitudinal transport to radial transport by 

where we have made use of the identity 
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For the systems we wish to consider, the state ahead of the shock is homenergic. 
Equation (2.3) then reduces to the strong form of Bernoulli’s law, which in the strong- 
shock approximation is 

where D is the detonation velocity. 
To complete the specification of the problem we need to specify the constitutive 

relations and the boundary conditions. As constitutive relations, we take a polytropic 
equation of state 

e (P ,p )  + P / p +  4 (uI2-qA = $D2, (2.7) 

where y is the polytropic exponent, and a state-dependent rate law 

R = k(c2/c$) g(c2/c$, P/Pci, ..., A) ,  (2.9) 

where k is the rate multiplier and g is as yet an arbitrary function. The form of (2.9) 
was selected for the convenience of the calculations in 0 4. The boundary conditions 
must be applied along three distinct curves; the piston surface (rear boundary of 
the explosive), the interface separating the explosive from the confining inert, and 
the detonation shock. In  this paper, we will restrict our attention to studying the 
reaction-zone structure. Assuming that the piston velocity is sufficiently low, the 
piston condition decouples from the reaction-zone structure. Second, we assume that 
the interface separating the explosive from the inert is a slip-line free boundary 
along which the pressure and streamline deflection are continuous. Finally, along 
the free-boundary shock locus we have the conditions (Hayes & Probstein 1966) 

and 

Y + l  

u,+ = -- Y 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

where .zs(r) is the shock locus and the + subscript denotes the shock value. In the next 
section we derive the generalized Wood-Kirkwood approximation. 

3. The generalized Wood-Kirkwood theory 
The central approximations in the Wood-Kirkwood theory of the diameter effect 

(Wood & Kirkwood 1954) are the result of the following assumptions: (1)  the explosive 
charge size is large compared with the one-dimensional reaction-zone length and (2) 
the radius of curvature of the shock is large compared with the one-dimensional 
reaction-zone length. Figure 2 shows a schematic representation of the Wood- 
Kirkwood reaction zone. Even though Wood-Kirkwood introduced these concepts 
and applied them in their theory, they did not fully utilize all of the implications. What 
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FIGURE 2. A schematic representation of the Wood-Kirkwood 
two-dimensional reaction zone. 

we will do is show how the entire flow can be calculated when, in addition to the Wood- 
Kirkwood approximations, we assume that the streamline deflection angle remains 
small. 

The assumptions of Wood-Kirkwood can be translated into precise mathematical 
expressions. In  appendix A, we show that the contribution of the vorticity to the 
energetics of the flow is small compared with the contribution of the chemical reaction. 
Using this result, we derive an equation for the streamline deflection angle in 
appendix B, equation (B 19), 

where u1 = (u, - Z b , )  [ 1 +  ( 2 3 2 1 - 4  (3.2) 

u2 = (Z:.U,+U,) [I + (2321-4, (3.3) 

and s-1 = - 2:[ 1 + (z;)2]-4 (3.4) 

where S is the radius of curvature of the shock. Equation (3.1) states that the reactivity 
curves the streamlines toward the axis of symmetry in the subsonic part of the flow 
(most of the reaction zone). This is simply a consequence of the assumption that the 
detonation shock is not strongly curved so that the pressure gradient through the 
reaction zone is large compared with the pressure gradient along the shock. Equation 
(3.1) is both a new and an interesting result. It states that, in reactive flows for which 
the vorticity can be neglected, the streamline curvature is related to both the sign of 
the energy release and the sonic character of the flow. 

Next, we consider the magnitude of the streamline deflection angle. The tangent of 
the deflection angle at  the shock can be obtained from equations (2.1 1 )  and (2.12) : 

-1 a=- -  'y-1+(z;)2 [ ] . 
y+lZ.' y+l (3.5) 

In  appendix C we show that at  the charge boundary the flow in the shock fixed reference 
frame must be either subsonic for a heavily confined charge or sonic for an unconfined 
charge. If we neglect the vorticity, it then follows that 

and 6 < (y2- l)-k (3.7) 
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For most solid high-explosives y is near 3-0. Therefore, in view of the results contained 
in (3.1) and (3.7), the tangent of the streamline deflection angle will be less than about 
one-third. This is small enough to justify the assumption that the streamline deflection 
angle remains small. We will assume that z i  = O(S). Nevertheless, (3.14) yields 
solutions with the correct asympotic dependence for 2: = O(1). 

One comment is in order concerning the validity of neglecting the vorticity. Near the 
charge boundary, the deflection of the streamlines in the high-explosive must match 
that of the streamlines in the confining inert. Since there is a discontinuity in the 
reactivity as we pass from the high-explosive into the confining inert, the analogue 
of (3.1) for the inert leads us to  the conclusion that the streamlines in the inert are 
more nearly straight lines. I n  turn, it follows that the vorticity must be important 
in the high-explosive near the inert boundary. It can be shown that this boundary 
region extends into the explosive for approximately one reaction-zone length (see 
appendix F). 

Taking advantage of the smallness of the deflection angle, we can find a first 
approximation to the solution of (3.1). Replacing pR[u,(u2, - c2) p(ae/aP)]-l by its one- 
dimensional value - d(ln uJdz in (3.1) gives us an equation which readily integrates to 

Ur = - x.;ru, + ~)(u,/u,+)a(z;q + o(s3) + o(ss-1), (3.8) 

where a(2:) = (xi)”/[ 1 + (2321. (3.9) 

For values of y near 3.0, the factor (u,/uz+)a@;) does not deviate from one by more than 
10%. Therefore, we get as our approximation to the radial velocity 

ur = -2 S- ‘ ( 1  + t )  + O(83) + O(SS-1), 
(Y + 1)  

(3.10) 

t =  (I-h)B, ( 3.11) 

where we have replaced u, by its one-dimensional value. 
Equation (3.10) is a mathematical statement of our generalization of the Wood- 

Kirkwood theory of two-dimensional detonation. It states that u, depends on r only 
through 2: and decreases by a factor of two from the shock to the end of the reaction 
zone. We will use this result in equation (2.5) to calculate our two-dimensional deto- 
nation. Higher approximations to  ur can be found by treating the problem with 
singular perturbation theory with (2 ,  Sr) as the independent variables and expanding 
the solution in a power series in S (see appendix D). However, the purpose of this 
calculation is to display the properties of two-dimensional detonation as clearly as 
possible. Therefore, we will not include any higher approximations to  u, than are 
contained in (3.10). When higher approximations are included, only a small quanti- 
tative change occurs in the solution. 

If we are to describe the reaction-zone structure shown in figure 2, it will be con- 
venient to  transform to independent variables that are locally fixed to  the shock. We 
will transform to t ,  r as independent variables, where 

(3.12) 

(3.13) 
at at - = - Z i z +  o(s3) + o(ss-1). and ar 
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With the use of (3 .13) ,  (3 .12 )  and (3 .10 ) ,  we can now rewrite (2 .5 )  as an ordinary 
differential equation for u, with t as the independent variable and r as a parameter (see 
appendix E) 

du2 
dt 

( t2 -uE)>+4 tuEt2D[R(y+  1)I-l (z:+:zi) (1  + t ) +  2 t u E D 3 y +  1)- l  

= + ~ : ~ ( y +  1)-3 ( Z p j ( t )  + o(s4) +o(s2s-1) + 0(8-2), (3 .14 )  

where t2 (the fixed composition sound speed on the central streamline) and f ( t )  are 
given in appendix E. That is, equation (3 .14)  describes the evolution of u: along a 
streamline. For most solid high-explosives, the detonation velocity deficit at  failure 
and correspondingly the scaled value of S-l are O( 10-I) (Campbell & Engelke 1976). 
Therefore, the terms that we have neglected in deriving (3 .14)  represent no more than 
an O( effect. 

To help in understanding the physical nature of the solutions of (3 .14)  that appear 
in the next section, we briefly describe the physical nature of the terms in (3 .14 ) .  The 
terms on the left-hand side are present everywhere in the flow including the symmetry 
plane (line). Along the central streamline (2: = 0), they reduce to the quasi-one- 
dimensional approximation. The explicit term on the right-hand side vanishes on the 
symmetry plane (line). Term by term, we have: 

Left-hand side: 
( 1 )  the energy diverted to the longitudinal motion; 
( 2 )  the energy diverted to streamline divergence. This term is proportional to the 

ratio of the mean shock curvature to the reaction rate, where - & ( x l +  (a/r)  2:) 
is an approximation to the mean shock curvature [O(S2) terms omitted]; 

( 3 )  the chemical energy release. 

( 1 )  the energy diverted to the lateral motion, being proportional to the square of 

( 2 )  energy diverted to rotational motion, etc. 

Therefore, we find that by generalizing the Wood-Kirkwood assumption concerning 
a two-dimensional reaction zone, we can reduce the partial differential equations 
describing the complete reaction zone to a set of ordinary differential equations, with t 
as the independent variable and r as a parameter. If the reaction rate depends only on 
the independent variable t and on the dependent variable c2 (i.e. on u,, u, and t ) ,  then 
the set of ordinary differential equations reduces to equation (3 .14 ) .  In the next section 
we present the solution to these equations for a model rate law. 

Right-hand side: 

the streamline deflection angle; 

4. A simple detonation model 
In  deriving equation (3 .14 ) ,  the radial flow has been approximated by (3 .10) .  

Therefore, the boundary condition along the high-explosive/inert boundary cannot be 
satisfied exactly, but only in an average sense (see appendix F). Since the initial inte- 
gration of equation (3 .14)  treats t as the only independent variable, we will postpone 
considering the inert boundary until later. Two conditions remain that must be 
satisfied by the solution of (3 .14 ) ;  they are: ( 1 )  the conditions a t  the shock boundary, 
and ( 2 )  those at  the singularity that occur when ( t2-u;)  = 0 .  
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To facilitate the analysis, we introduce the change of variables 

into (3.14), to get 

(4.2) 

where g and k are defined in (2.9). Equation (4.2) is an ordinary differential equation 
in t for #( t ;  r ,  1 )  with r appearing as a parameter in 26 and&. At the shock, equation (2.1 1 )  
requires that 

(4.3) 

and at  the singularity, which we define to be at  t* ,  (4.2) gives us the two equations 

[Z2(y2 - 1) + 1 - t 2  - $1 @ + 4t$[l- h( 1 + t )  g-'1 = ( ~ l ) ~ f ( t ) ,  

$ ( t  = 1)  = z 2 [ ( ~ -  i )2+4(y-  1)  (z;)2+o(a4)1, 

P(y2- 1)  + 1 - t * Z - $ ( t  = t") = 0 (4.4a) 

and 4t*$(t = t * )  [l - Z€( 1 + t* )  g ( t  = t* ) - l ]  - (Zi )2f ( t*)  = 0. (4.4b) 

When the solution of (4.2) is forced to satisfy (4.3) and (4.4), we get a differential 
relation involving 1, B ,  z: and r .  This relation, together with some average streamline 
deflection condition a t  the explosive/inert boundary, gives us a differential condition 
from which we can obtain the diameter effect and the shock locus for an explosive in 
a given geometry with a given confinement. 

Before we can proceed to solve (4.2) we must define a rate law. For the purposes of 
this demonstration, we will require that the rate have two properties. First, we would 
like the rate to depend on the thermodynamic state, say the pressure. Second, we will 
require simplicity in the form of the solution to (4.2), (4.3) and (4.4). The rate 

(4.5) 1 R = k ( C 2 / C E j ) l n ( l + t ) $ ,  

R = 0,  

0 < t < I ,  

t = 0, 

where t = (1 -A)+, includes both properties. The dependence on the local thermo- 
dynamic state via c2 and on the shock state via Zn, gives us the desired state dependence. 
The somewhat unrealistic factor ( 1  + t )  q5 gives us the desired simplicity. When 
equation (4.5) is substituted into (4.2), we get an Abel first-order differential equation 
of the second kind. Other, perhaps more 'realistic ', rates could be used but in that case 
equation (4.2) would require numerical integration. For such cases, the analytic 
structure of the solution would be lost, thereby making the solution more difficult to 
interpret. 

Treating the off-axis term in (4.2) as a perturbation, we can use Lighthill's stretched 
co-ordinate technique (Comstock 1972) to solve (4.2). Equation (4.2) is a singular 
perturbation problem, because ( 4 . 4 ~ )  must be satisfied (the flow must be sonic) at  some 
point in 0 < t < 1 .  Retaining only first-order terms in the perturbation, we find 

$ = 2fAl-n- P(y2 - 1) - 1 + ?p+ H ( r )  * {H2(r) + 2H(r) [€z'-n - 12 (7'- 1 )  - 1 + v2]}4, (4.6) 

where we have taken care that the stretched co-ordinate q, 
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reduces to t at the critical point (sonic point). Here, H ( r )  is an arbitrary function 
introduced by the integration. Because of our choice of the rate law, (4.6) is identical 
in form to the one-dimensional solution. As in that case, we choose the strong deto- 
nation branch (Fickett & Davis 1979). Requiring that equation (4.6) satisfy the shock 
and singularity conditions of (4.3) and (4.4), we find that we can have a solution to our 
problem if, and only if, 

where the scaled mean shock curvature K is 

l4 - l2 + /l-nK - (2,t)2 = 0, (4.8) 

Equation (4.8) is our differential condition relating 1, E, 26 and r .  It can readily be 
integrated to get the shock locus and detonation velocity as a function of the charge 
size. 

At this point in our calculation, the formal solution of the problem is complete. In  
the next section, we will examine some of the properties of the solution. 

5. Discussion of the results 

the central streamline limit of equation (4.8) 
Equation (4.8) provides the basis for our discussion. We begin by first considering 

(5-1) p + n  - p+n + f = 0,  

where 2 is the scaled mean shock curvature on the central streamline. We note that 
f contains the factor ( 1  +a). Therefore, for a given detonation velocity deficit, twice 
the experimentally measured shock curvature is needed in charges of plane symmetry 
as in those of cylindrical symmetry. 

Linearizing equation (5.1) in the velocity deficit, we get the Wood-Kirkwood result, 
(1.4). Retaining the nonlinearities in (5. l ) ,  we find that Z(G) can be double-valued when 
n > - 1. The two branches of the curve meet at  the point where (dZ2/dk) = 00; 

l + n  
1; = Kn' ( 5 . 2 ~ )  

( 5 . 2 b )  

Since no solutions can be found for i3 > 2, when n > - 1, we call equation (5 .2)  the 
detonation failure condition. Therefore, when the nonlinearities in the rate are 
retained, the model can show detonation failure. Of the two branches of 1(i3), we will 
consider only the upper branch, the so-called high-order detonation branch. For a 
discussion of the possible significance of the lower branch (see Tsug6 et al. 1970; 
Zeldovich & Kompaneets 1960). 

From equation (5.1), we find that at  l2 = 1 the slope d12/d2 is independent of n and 
depends only on the one-dimensional reaction-zone length. Also, for n > - 1, 12vs. f 
is downward concave with the curves of smaller n providing a bound from above for 
those of larger n. The slope of 1 us. 2 a t  the failure point defined by (5 .2)  is infinite, and 
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FIGURE 3. The detonation-velocity fraction ( 1 )  va. the scaled central streamline mean shock 
curvature (k) for the rate law of (4.5), with rz = - 2, 1, 4 and 8. The dots indicate the point of 
detonation failure as defined by ( I , ,  k,) ,  and the dashed line is the failure locus. The n = - 2 curve 
does not show failure. 

as n is increased Gf decreases and Z,2 increases. Figure 3 shows 1 us. C for a number of 
different values of n. 

The failure condition given by (5.2) is sufficient to ensure failure in the sense that no 
solutions are found for C > Gf. However, since (4.8) and not (5.1) is the constraint 
relating 12, K ,  and r ,  equation (5.2) may not be a necessary condition at failure. We 
define detonation failure as: the pair 1, r*( l f , r f )  for which (4.8) and the boundary 
condition at  r* no longer have a solution for r satisfying 0 < r 6 r*. 

For a polytropic equation of state, (4.5) will lead to failure only when n > - 1. This 
leads to the question: Why must the rate law exceed a critical state dependence before 
it exhibits failure? We can gain some insights into this question by examining the 
terms in (4.2) corresponding to the energy release rate and central streamline diver- 
gence. At the shock these terms are 

where the first term is the reactive source and the second term is the divergence loss. 
The important question seems to be: What qualitative change occurs in (5.3) as we 
change n? At failure 
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so that (5 .3 )  does not necessarily go through a zero a t  the failure point. What does 
change as we change n is the nature of the feedback that 1 has on the 'effective' flow 
divergence (K^Z-l-n). For n = - 2, equation (5.3) becomes 

4(y-  1)222(1 -a), ( 5 . 5 )  

so that, as E3 is increased, which leads to a decrease in I, 1 moderates the increase in the 
effective flow divergence. This is a negative feedback. Whereas, for n = 0, equation 
(5 .3 )  becomes 

so that, as E3 is increased, I accelerates the growth of the effective flow divergence. This 
is a positive feedback. Therefore, we speculate that failure occurs only for rates which 
generate positive feedback. For n = - 1, the state dependence of the rate, (4.5), goes 
like l3 and that of the divergence term [c2au,/ar in (2.5)] also goes like 13. Generalizing 
to  an arbitrary rate, the existence of detonation failure requires that the state depen- 
dence of the energy release be greater than that of c2 au,/ar. For the popular power-law 
pressure dependent rate law [equation (D l)], we can show, using the type of analysis 
described in appendix D, that a linear burning ( P )  will not lead to failure, whereas a 
quadratic burning ( P 2 )  will show failure. 

Up to this point our discussion has been limited to  only the central streamline. 
Equation ( 4 . 8 )  contains information about the off-axis flow as well. Adding information 
about the high-explosive streamline a t  the explosive/inert boundary, we can integrate 
equation (4.8) to get the shock locus.As was discussed in 5 3 and appendix C, thedetails 
of the explosive/inert interaction are not treated properly by this analysis. Fortunately 
these details extend laterally into the flow no more than one reaction-zone length (see 
appendix F and Bdzil 1976), a t  which point the lateral boundary condition is 

4(y - 1)2 Z2( 1 - W ) ,  (5.6) 

where 6 is the streamline deflection angle a t  the intersection of the shock and the 
interface and 9 = O( 1) corrects for the mismatch of the streamlines at the explosive/ 
inert interface. To first order, we are justified in applying (5.7) a t  r*. 

A straightforward integration of (4.8) yields the following : 

a = 0: 

a =  1: 

dw 
- dx = - 11-% tan (Ox), 

dw 
- - P-"OJ~(OX)/J,(OX), dx- 

where Jo and J1 are Bessel functions; we have introduced the scaled variables 

( 5 . 8 ~ )  

(5 .8b )  

and G2 = 2ln-1, (5.10) 

Requiring that equations ( 5 . 8 ~ )  and ( 5 . 8 b )  satisfy (5.7) a t  r = Y*, we get two tran- 
scendental equations relating the detonation velocity, I, to the half-size of the explosive 
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charge. Solving these equations, we get the diameter-effect relation for plane-symmetric 
and axisymmetric geometries : 

a =  0: Izi(r*)l = P-"O tan (Ox*); (5.1 1 a) 

a =  1: Izi(r*)l = ll-"OJl(Gx*)/Jo(~z*). (5.11b) 

Integrating (5.8) an additional time, we get the shock locus: 

a =  0: w = P-nln [cos (&,z)/cos (Gx")]; ( 5 . 1 2 ~ )  

a =  1: w = 11-" In [J,(Gz)/J,(Gx*)]. (5 .12b)  

Detailed calculations of the flow near the interface (Bdzil 1976) show that the cor- 
rections to (5.12) near the interface are of the order of 10 %. Therefore, even near the 
interface, (5.12) provide a good approximation to the shock locus. 

Analysing the functions (5.11) and (5.12), we are led to some interesting conclusions. 
First, multiplying (5.11) by z* and then taking the limit as x* + 00, we find that 
cos (Ox") cf r*-l[J,(&z*) cc r*-l], so that 

lim 1 = 1 - O(r*-2). 
T*-+Q) 

(5.13) 

It can be shown that (5.13) is true without regard to the form of the rate law. That is, 
the extrapolation to infinite charge size detonation velocity is not linear in r*-l, as 
commonly assumed, but instead is quadratic in r*-l. Second, the value of 1 a t  failure in 
the Ivs.r*-l plane will not in general occur a t  the value given by (5.2). For n = 1,  
failure occurs at  thevalue given by (5.2) with an infinite value for the slope dZ/d(r*-l). 
When n < 1 ,  failure continues to occur at the value given by (5.2). However, the slope 
dl/d(r*-l) is finite a t  the failure point. With n > 1, failure occurs for $ < 2, and 1 > I,, 
where 2, and 1, are given by (5.2). The slope dl/d(r*-') a t  failure is infinite for this case. 
We can restate this result as follows: (1) for n < 1 detonation failure occurs first a t  the 
centre of the charge, ( 2 )  for n > 1 detonation failure occurs first a t  the edge of the 
charge. The magnitude of both of these effects as well as the general scale of the 
diameter effect depends on the size of 6 (i.e. on the confinement). The effects are 
negligible for 6 very small. When 8 is larger the effects are observable but small. We 
must keep in mind that, near the edge of the charge, the terms which have been 
neglected in the calculation should be included as S is made larger. 

Figure 4 shows the diameter effect ( 1  us. z*/r*), where z* is the one-dimensional 
reaction-zone length, 

(5.14) 

for 8 9  = 0.098 and for the four cases discussed in figure 3. The two sets of co-ordinates 
along the horizontal axis correspond to cylindrical (plane) symmetry, and the dots 
represent the points of detonation failure in this plane. We observe that the scaling 
from axisymmetric to plane-symmetric flow is a factor of two along the horizontal 
axis. Also, the r*-2 limiting behaviour near 1 = 1 and the departure from the failure 
condition of (5.2) are not pronounced. The value of 8 9  considered here is close to the 
value for nitromethane confined in thick wall brass tubes at 34°C ( 8 9  = 0.08). 
Figure 5 is similar to figure 4 except 8 9  = Q. Now, the slope of the curves is distinctly 
horizontal near 1 = 1 and the points of detonation failure have moved up to smaller 
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FIGURE 4. The detonation-velocity fraction ( I )  w8. the one-dimensional reaction-zone length ( z * )  
divided by the explosive half-size (diameter effect) for equation (4.5), with 132 = 0.098, y = 3, 
and n = -2 ,  1, 4 and 8. The points of detonation failure (dots) agree with equation (5.2.). 
Cylindrical (plane) symmetry are distinguished by the horizontal axis. The n = - 2 curve does 
not show failure. 

velocity deficits. Also, t,he scaling from axisymmetric to plane-symmetric flow is no 
longer a factor of two along the horizontal axis. The off-axis results for the case of 
cylindrical symmetry are summarized in figure 6. We note that with the exception 
of the largest charges, where S-I - r*-2, the mapping from S-' to r*-l essentially 
preserves the shape of the curves in going from Zvs. f to 1 us. r*-l. Roughly speaking, 
an m-fold decrease in the confinement angle is equivalent to an m-fold increase in 
the charge half-size. 

The results for the diameter effect presented above indicate that the extrapolation 
to infinite charge diameter is quadratic in r*-l and not linear. If we now consider the 
properties of the shock locus as given by (5.12), we find that this feature of the diameter 
effect is revealed in the shock locus as well. A convenient set of parameters to discuss 
the shock shape with is the distance in the z-direction from the lag to the lead point on 
the shock 

y* = z-distance from the lag to the lead point on the shock, 

and the charge half-size. Using equation (5.13) in (5.12), we find 

lim y* = O[ln ( r*) ] .  
r*+w 

(5.15) 
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(0.06) 

z*/r* 

(0.12) 

FIGURE 5. The diameter effect for 8 2  = f. See caption for figure 4 for other details. The dashed 
curve is for a plane-symmetric calculation, the others are for cylindrical symmetry. The dots 
represent the points of detonation failure and do not agree with equation (5 .2 ) .  
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FIGURE 6. The scaled central-streamline shock curvature ( - z*d2z,/drZ) 2)s. the scaled inverse 
charge half-size ( z * / r * ) .  The rate law is given by equation (4.5), y = 3, and n = - 2, 1, 4 and 8. 
The arrows indicate the curves go off the graph to the right as straight lines. The symmetry is 
cylindrical. For the upper four curves 8 9  = ). The bottom curve has 6 9  = 0.098. 
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FIGURE 7. The inverse of the scaled shock lead-lag distance vs. the inverse of the scaled charge 
half-size. The rate law is given by equation (4.5), y = 3, 6 8  = +, and n = - 2, 1, 4 and 8. The 
symmetry is cylindrical. The arrows indicate the curves go off the graph to the right nearly 
linearly. 
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FIGURE 8. The shock loci for I = 0.9997 (lower curve) and for I = 0.9109 (upper curve). 

The symmetry is cylindrical, y = 3, n = 8 and 8 2  = ). 

Figure 7 shows this behaviour. That is, the distance from the lag to the lead point on 
the shock does not have a defined upper bound. Figure 8 compares the shock locus 
when y = 3, n = 8, 8 9  = 0.333, and cylindrical symmetry for a charge near infinite 
medium velocity 1 = 0.9997 (lower curve) t o  a charge near failure velocity 1 = 0.9109 
(upper curve). Near failure the curvature is nearly constant along the entire shock. 
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For large charges the shock is relatively flat, with the curvature being small near the 
centre and increasing as the edge is approached. Thus, the shock locus experiences a 
qualitative change in shape with charge size. 

In  summary, we have shown that by generalizing the Wood-Kirkwood assumption 
a self-consistent reaction-zone structure for a two-dimensional detonation can be 
calculated. The most significant properties of this steady-state solution are: 

(1) A first approximation to the radial flow is obtained. 
(2) The detonation failure limit is defined for a model state-dependent rate law. 
(3) The diameter effect is calculated. 
(4) The shock locus is determined. 

6. Comparison of theory with experiment 
In  the previous sections, we showed that the generalized Wood-Kirkwood 

assumptions lead to a mathematically consistent approximate solution of the partial 
differential equations governing two-dimensional steady-state reactive flow. The 
resulting theory leads to a number of conclusions which are unexpected, or at least 
not in keeping with the lore of the diameter effect and the related phenomena: 

(1)  the extrapolation of the measured detonation velocity to infinite charge size is 
quadratic in (charge size)-1 and not linear as generally assumed; 

(2) in the limit of infinite charge size, the flow along the central streamline is one- 
dimensional, while the distance from the lag to the lead point on the shock becomes 
infinite. 
By comparing our calculations with experiment in a region where these effects are 
important, we will show that the theory and experiment are in substantial agreement. 
In  order to maintain uniformity in the analysis, we will use (4.5) as the rate law even 
though it is probably physically unrealistic. 

The available experimental data which are both of good quality and of interest for 
the comparison we wish to make are limited. Most of them are unpublished and are 
available only as private communications from personnel at  the Los Alamos Scientific 
Laboratory. For our comparison we choose some data on nitromethane confined in 
thick-walled brass tubes and on PBX-9404 unconfined. 

The comparison of theory and experiment for nitromethane is probably inappro- 
priate, since the theoretical diameter-effect curve is downward concave and has an 
infinite slope at failure and the nitromethane curve is linear (for the experimental 
charge sizes). However, the available nitromethane data do not show any evidence of 
gross unsteady phenomena far from the failure size, and only as the failure size is 
approached are pronounced failure waves (instabilities which may quench the deto- 
nation) observed (Watson 1970). Therefore, it seems reasonable to assume that 
detonation failure in nitromethane is the result of an onset of a gross hydrodynamic 
instability on a steady-state two-dimensional detonation. If we restrict our attention 
to large-diameter explosive charges, the steady-state theory presented here should 
serve as an approximation to the diameter effect for nitromethane far from failure. 

There is one feature of the nitromethane detonation that we have ignored. Numerous 
experimenters have reported results which suggest that there is a dark wave structure 
superimposed on the gross features of the detonation front even for large-diameter 
charges (Davis 1965; Dremin & Savrov 1966). However, measurements of the shock 
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locus for large charges show that (to within f 0.01 mm) the shock is smooth and (to 
within 5 % of the central radius of curvature) reproducible (Davis 1964). Since both 
the shock locus and detonation velocity depend only on integrals of the net heat 
release along a streamline through the reaction zone, we might expect that a steady- 
state theory would provide some average first approximation to the diameter effect. 

The data for nitromethane/brass are particularly convenient for our comparison 
since the streamline deflection angle at the explosive/inert boundary is quite small. 
Thus, our assumption of a small streamline deflection angle is certainly satisfied. The 
data were collected over a period of ten years by two investigators. Commercial grade 
nitromethane was used. The detonation velocities at  34 "C were measured using a pin 
technique (Malin 1955). The pins were mounted flush with the inner wall of the tube 
in holes drilled through the 6.35 mm tube wall. The shock loci at  25 "C were measured 
using a velocity synchronized smear-camera technique (Davis 1964). A mirrored glass 
plate (mirror toward the explosive) was attached obliquely to the end of a 3 mm thick 
wall brass tube. The mirror angle was selected so that the detonation wave swept the 
mirror at the same velocity that the image was swept on the film. Light from an 
external source was extinguished when the detonation wave deflected the mirror. This 
technique has the advantage of giving very crisp records. It is well known that nitro- 
methane exhibits a strong temperature effect on both the infinite diameter detonation 
velocity and the slope of the diameter effect (Campbell, Malin & Holland 1955). Since 
it is not known how to adjust the data for temperature, we will use the data as given. 
The value of y was obtained by using the results of Davis, Craig & Ramsay (1965). 
At 4 "C they give an initial density of 1.159 g 0111-3, a detonation velocity of 6374 m s-l, 
and a Chapman-Jouguet pressure of 12.2 GPa, which yields y = 2-86, 

As input to the calculation we use y = 2.86 and the density at 34 "C, 1-1 18 g ~ m - ~ .  
A Tait equation of state, calibrated to shock Hugoniot data in the region 5-25 GPa, 
was used for the brass. The explosive/inert match is described in detail in appendix F. 
A description of the mean flow in the explosive adjacent to the inert, the flow in the 
inert, and the explosive/inert match is given. Using equations (F 3) and (F 38), we 
find that for nitromethane confined by brass 

S = 0.07, 9 = 1-14. 

The only parameters which remain free are: the state dependence of the rate (n), the 
infinite-medium detonation velocity, and the one-dimensional reaction-zone length. 
Since the detonation velocity data show slight upward concavity, we set n to the 
smallest physically reasonable value, n = - 4 .  This corresponds to a rate whose 
dependence on the shock state is nearly neutral. When n < - 4 (n > - 4), the rate at 
the shock decreases (increases) with increasing shock pressure. The remaining para- 
meters were selected by requiring a good fit to the diameter effect data, particularly 
for the larger charges. We find that the one-dimensional reaction-zone length is 
0.0665 mm and the one-dimensional detonation velocity is 6209 m s-l. Figure 9 
shows the calculated diameter effect, the five data points, and the experimentally 
determined detonation failure point. Using this calibration the shock loci were calcu- 
lated for a 25.4 mm radius charge and a 6-35 mm radius charge, and compared with the 
experimentally measured values at  26OC. Figure 10 shows that the calculated and 
experimental values for the shock locus are in very good agreement. Thus, away from 
the failure point, this theory, with its unconventional features, is in good agreement 
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FIGURE 9. The diameter effect for nitromethane at 34 “C confined in brass cylinders of inner 
radius CT*. The curve is the calculation, the circles are the data points, and the star is the experi- 
mental failure point. The parameter values are: po = 1.118 g ~ m - ~ ,  y = 2.86, DCj = 6209 m s-l, 
n = - 4, and the one-dimensional reaction-zone length = 0.0665 mm. 
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FIGURE 10. The shock loci for nitromethane confined in brass cylinders. The curves are the 
calculation, the circles are the 25.4 mm radius data, and the crosses are the 6.35 mm radius data. 

with experiment. The calculation based on this theory represents the first quanti- 
tatively correct calculation of the diameter effect and shock loci that has been made. 

It’s worth noting that the one-dimensional reaction-zone length [equation (5.14)] 
determined by this calculation (0.0665 mm) is for the reaction rate [equation (4.5)]. 

A limited amount of data is also available for the solid explosive PBX-9404, 
det.onated unconfined (Campbell & Engelke 1976). Since the diameter effect is strongly 
downward concave for this material, the theory can be calibrated t o  reproduce the 
entire curve, including the detonation failure point. Due to  the lack of confinement, 
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FIGURE 11.  The diameter effect for unconfined cylinders of PBX-9404. The curve is the calcu- 
lation, the circles are the data from Campbell & Engelke (1976). The parameter values are: 
po = 1.84 g ~ r n - ~ ,  y = 2.95, Do, = 8780 ms-l, n = 2.6, and the one-dimensional reaction-zone 
length = 0.0220 mm. 

the flow at the intersection of the shock and the charge boundary must be sonic (see 
appendix C). Appendix F provides no guidance on the selection of the parameter 9 
for this case. However, since the flow must be subsonic as we proceed into the explosive, 
we will set 9 = 1.0 and take 6 to be the tangent of the deflection angle at the sonic 
point on the shock. The value of 6 is larger for this case than in the previous example. 
This provides us with a test of both the usefulness of the small deflection angle approxi- 
mation as well as exaggerating the large-radius charge features of this model. 

Calibrating the model to this system is particularly easy. The initial density is 
1.84g ~ m - ~  and the polytropic exponent is y = 2.95 (Davis 1976). Requiring the flow 
at the shock to be sonic at the edge and subsonic elsewhere, (3.6) and (5.7) give us 

6 = 0.36, 2 = 1.0. (6.2) 

If the failure point is to be reproduced, we must take n = 2.6 and the one-dimensional 
reaction-zone length to be 0.0220mm. Finally, the best fit to the large-diameter 
detonation velocities is obtained when D, = 8780 m s-l. Figure 11 compares the 
calculated dia-meter effect with the experimental data. Generally, the agreement is 
good. The relatively flat diameter effect for large charges predicted by this model is 
consistent with the data. Near the knee of the curve the agreement could be better. 
In  large part this is due to the relatively weak state dependence of the rate given by 
(4.5).  Shock locus data exist only for the 12.7 mm radius experiment. Figure 12 shows 
that the calculated and experimental shock loci are in excellent agreement. The very 
good agreement of calculation and experiment near the charge boundary adds support 
to our small-deflection-angle approximation. Also, the overall agreement of the shock 
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FIGURE 12. The shock locus for a 12.7 mm radius unconfined PBX-9404 cylinder. The curve 

is the calculation, the circles are the data discussed in Campbell & Engelke (1976). 

locus for a charge whose detonation velocity is on the nearly horizontal portion of the 
diameter effect, provides some measure of support for the features of this theory at 
large charge size. 

Considering the simplicity of the model, the good agreement of theory with experi- 
ment is perhaps surprising. To place these results in proper perspective, we need to 
reflect on the following points. First, the shock shapes and velocities do not uniquely 
define the flow. It can be shown that the local curvature of the shock (shock shape) 
depends only on the integral of the heat release along the local streamline and not on 
the local rate. This is true even very near the explosive/inert interface. Second, the 
sensitivity of the rates to local shock state is either not great (e.g. for PBX-9404 
the rate depends only weakly on the state) or not tested by the experiment (e.g. for 
nitromethane/brass the variation of pressure along the shock is small). Thus, even the 
dependence of the rates on local shock state is not tested harshly. Third, the sensitivity 
of the calculations to the equation of state (i.e. the shock slope at  the explosivejinert 
interface) is not great. For nitromethene/brass, the total pressure variation along 
the shock is small, while for PBX-9404 the sonic condition at  the edge tests the 
equation of state near the pressure range where it was calibrated. 

In  conclusion, where this theory is applicable, it is in substantial agreement with 
experiment. 

7. Summary 
The detonation diameter effect has been calculated with a steady-state theory that is 

a generalization of the Wood-Kirkwood theory. This theory is applicable to high- 
density explosives. It gives the relation between the detonation velocity and central 
radius of curvature of the shock and between the detonation velocity and the charge 
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size, The theory predicts the detonation failure state and gives the shock locus as a, 
function of the charge size. For systems to which the theory has been applied, it  repro- 
duces experimental measurements faithfully. 

Appendix A. Calculation of the order of the vorticity 
One of the central assumptions of the Wood-Kirkwood theory is that the radius of 

curvature of the shock is large compared with the one-dimensional reaction-zone 
length. In  this appendix we will show how this leads to the conclusion that the vorticity 
SZ is small. 

We first give a well-known result, due to Hayes (1957). The vorticity generated by a 
curved shock passing into a quiescent fluid, where the fluid is governed by (2.1)-(2.4) 
and (2.8), is 

for a two-dimensional plane or axisymmetric flow, where SZ, is the vorticity just behind 
the shock. Therefore, if the radius of curvature of the shock is large 

(8-1 = - z,”[J + (2:,)2]4} 

measured in units of the one-dimensional reaction-zone length, then the vorticity at 
the shock [O(SS-l)] is small. 

Using equations (2.1)-(2.3), we can derive an equation that describes the evolution 
of the vorticity behind the shock. We begin by introducing the vector identity 

u . v u =  (vxu)xu+gv(u .u) .  (A 2) 

Substituting equation (2.2) into (A 2)) we get 

(A 3) 
1 

P 
(Vxu)xu  = --VP-&V(u.u). 

Taking the curl of this equation and recalling that 

and for our two-dimensional flow 
v . v x u  = 0, 

(Vxu).Vu = 0, 

we get u .vsz+nv.u  = -Vp-lxVP. 

Substituting equation (2.1) into the above equation, gives us the desired result 

u .  V ( Q - 1 )  = -p-lVp-l x VP. (A 5 )  

The order of the source term in (A 5) can easily be found. Transforming from the 
independent variables ( z , ~ )  to the more suitable variables (h,zi), the source term 
becomes 

- 

Since the deviations from the one-dimensional solution are 0 ( 6 ) ,  it follows that the 
source term for vorticity production in the flow is O(SS-l). Therefore, we find that 

!2 = O(SS-1). (A 7) 
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f+ +k+ rj = constant 

FIGURE 13. The shock-oriented, orthonormal, curvilinear 
co-ordinates we will use in our analysis. 

i E = constant -.) 

Appendix B. Calculation of the streamline curvature 
The derivation of the generalized Wood-Kirkwood theory requires that we give 

some information about u,. In  this appendix we will show how a differential equation 
for the streamline deflection can be derived from (2.1)-(2.4) and (2.8). The starting 
point for the analysis is the identity 

where (V . u ) ~ ~ ~ ~ ~  = au,/az + &Jar. The analysis is most conveniently carried out in 
the plane curvilinear co-ordinates shown in figure 13. 

As an alternative to carrying all the terms in the analysis of (B l ) ,  we will neglect 
derivatives in the { direction since they are O(SS-l), and simply quote the results for 
an inert flow relating streamline curvature a t  the shock to the vorticity for a two- 
dimensional plane or axisymmetric flow. For an inert polytropic fluid that is quiescent 
ahead of the shock, we have in the strong shock approximation (Rao 1973) 

($)+ = -- 2(y - 1)  (u: - G:) n + + p ) 2 ,  
r Uzt 

2 D %+ 

where (d2z/dr2)+ is the streamline curvature a t  the shock. Therefore, for a convex shock 
(as perceived by a shock-fixed observer looking toward the quiescent material) the 
streamlines curve away from the central streamline in subsonic regions of the flow. 

We begin our analysis by giving the expressions for the divergence and gradient 
operators in our plane curvilinear co-ordinates (Morse & Feshbach 1953) 

where 

and 

f = z;[ 1 + ( 2 p - t  

i = (1 -f2)4q + f { ,  

j = -fq + (1  - f Z ) , i t  E,. 
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Using the definitions given in (B l ) ,  we write 

so that 

and 

Therefore, equations (B 3) and (B 4) can be written as 

h’ = f( 1 - f 2 ) k  

and 

To get an expression for ( V .  u ) ~ ~ ~ ~ ~  in (B 1) that is useful for computation, we need 
to replace aul/aq by a(u . u)/aq. Some straightforward algebra yields the identity 

so that 

Equation (2.5) gives us a second equation relating (V . u ) ~ ~ ~ ~ ~  and a(u. u)/a7 

(V . U)plane + 7 = [tu. V(U.  U) + q ~ / ( p e , ) l  C-2, (B 16) 

Combining equations (B 15)-(B 17), we can solve for (V . u ) ~ ~ ~ ~ ~  and a(u. u)/aq in terms 
of the rate, streamline curvature, and various derivatives taken tangent to the shock. 
In  turn, equation (B 13) can be used to express i?(u.u)/i?r in terms of the same 
quantities. The right-hand side of (B 1) is 

To complete our analysis all we need do is recognize that every derivative taken in 
the direction is proportional to 2: = O(LS-~). Therefore, we find that (B 1) becomes 

This is an interesting result. It states that in regions of subsonic flow an exothermic 
reaction curves the streamlines toward the symmetry axis of the flow. Recalling (B 2), 
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we find that near the shock in a subsonic flow the shock curvature acts to curve the 
streamlines away from the symmetry axis while an exothermic reaction curves the 
streamlines toward the symmetry axis. Therefore, if the radius of curvature of the 
shock is large, the dominant effect will be due to the chemical reaction and the curva- 
ture of the streamlines will be inward. 

Appendix C. Discussion of the flow at the edge of the explosive 
I n  this paper we will not be overly interested in the boundary conditions along the 

edge of the explosive charge. For the sake of completeness, however, this appendix 
briefly describes the flow in the vicinity of the intersection of the charge boundary and 
the shock. We will only consider the case of two-dimensional planar symmetry. 

For this analysis, i t  is most convenient to use a set of poIar co-ordinates centred a t  
the intersection of the shock and the explosive-charge boundary. We then assume that 
all of the flow variables can be expanded as Taylor series in 7, where 7 is the radial 
co-ordinate 

h = Th(l)(lY) + . . . , 
u, = tp(l~) + 7ui1)(e) + . . . , 

(C 1)  

(C 2) 

etc. 

Transforming equations (2.1)-(2.4) and (2.8), and the desired rate law to polar co- 
ordinates, and then substituting (C 1)-(C 2) into the result gives us a hierarchy of 
ordinary differential equations for the 0 dependence of the solution. Finding solutions 
t o  the resulting equations is straightforward, although somewhat time-consuming. We 
will not display the calculation here, but instead simply present the results for the 
example of greatest interest, an unconfined detonation. 

The lowest-order equations are those for an inert flow. Solutions can be found in 
Courant & Friedrichs (1948). Three cases come up: the flow a t  the detonation shock is 
(1) subsonic, (2) supersonic or (3) exactly sonic. Case (1) is ruled out because the 
analyticity requirements of subsonic flows do not permit the flow to be both subsonic 
(shock) and supersonic (zero pressure streamline) at the same point. Case (2) does allow 
the pressure to drop from a finite value a t  the shock to zero a t  the outermost streamline 
via a Prandtl-Meyer singularity. However, for this case information about the charge 
boundary can influence only a very limited region of the flow, and the shock is unaware 
of the existence of the charge boundary. Case (3) allows both a Prandtl-Meyer singu- 
larity and propagates information about the charge boundary to the sonic locus of the 
flow. Therefore, we assume that the flow at  the shock a t  the charge boundary is 
exactly sonic. 

Extending the calculation to the next order incorporates the effects of reactivity 
into the flow. The results of the first two orders of the calculation, for a shock that is 
sonic a t  the edge, are shown in figure 14. It is clear that information about the charge 
boundary travels along the C, characteristics that are shown, and is deposited on the 
O( 1)-sonic locus. This information is then used as data in the calculation of the subsonic 
flow regime, including the shock locus, detonation velocity, etc. Therefore, we can see 
how information about the edge propagates into and influences the entire subsonic 
reactive region. 

F1.M 106 
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0 (0) Shock 

boundary 

- P-M 
singularity Y/gL’ Sonic locus 

O(1) 
Sonic locus 

C+ characteristics 

FIGURE 14. A plot of the O( 1)  sonic locus for y = 3 and (0 - 0,) small. Also shown is a schematic 
representation of some C ,  characteristics emanating from the Prandtl-Meyer singularity. 

As we proceed into the charge we expect the flow to be less strongly influenced by 
the charge boundary. That is, we expect that the shock locus, the end of the reaction 
zone, and sonic locus will all be parallel, so that the O( 1)-sonic locus shown in figure 14 
must eventually show an inflection point. This implies that there exists one C, charac- 
teristic, the limiting characteristic, which is exactly tangent to the sonic locus. All of 
the C, characteristics to the right of it do not influence the subsonic flow regime. 
Therefore, as we introduce confinement into the problem, the subsonic flow regime will 
remain unchanged until the confinement becomes sufficiently heavy so as to influence 
the limiting characteristic. As the confinement is increased further, a point is reached 
when the flow in the explosive becomes subsonic and analytic in this entire region. 

A more detailed discussion of confinement can be found in Bdzil(l976). 

Appendix D. Calculation of a higher-order approximation to a,. 
In  Q 3 of this paper an equation for u, is presented that is valid up to O(6).  Since this 

expression essentially defines the two-dimensional character of our problem, we will 
present some results which support its use. 

The source for these results is a singular perturbation analysis of (2.1), (2.2), (2.3), 
(2.4) and (2.8) subject to all of the boundary conditions, for the rate law 

R = k(P/P,i)n t ,  (D 1) 

where t = (1  - A)$. The sole perturbation parameter is the streamline deflection angle 6, 
the pair of independent variables is ( t ,  F = 6r),  and the expansions taken for the 
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1.00 
0.75 
0.50 
0.25 
0.00 

0.00 0.00 0.00 
- 0.02 0.16 0.10 
- 0.27 0.22 0.22 
- 0.80 - 0.01 0-26 
- 1.71 - 1.11 - 0.84 

TABLE 1. The O ( P )  corrections to the central streamline flow divergence. 

dependent variables and the detonation velocity are 

and 

= (3) Dci [ ( y  - t ) 2 +  62$ + . . . I ,  

P = [( 1 + t )  + 624 + . . .,, 
Y+l 

Briefly, the leading term in (D 4) is obtained from the irrotationality of the flow at 
lowest order and from the known one-dimensional solution. The perturbations $and q5 
are obtained at  the next order by solving a system of linear ordinary differential 
equations in t with P as a parameter. At the next order, we get the equation (where we 
have taken a = 0 and restricted attention to the central streamline) 

which becomes a quadrature for (ae/aF) when $ and # are substituted into its right- 
hand side. Performing the integrations on t ,  we get 

where e is defined in ( 5 . 1 ~ )  and M(t ) ,  which represents the deviation from (3.10), is 
given in table 1 for y = 3, a = 0, and several values of n.  It can be shown that the 
detonation characteristics such as the wave front curvature and detonation velocity 
depend on the mean value of the flow divergence 

and experience only 1 % changes when M ( t )  is added to the calculation. 
8-2 



222 J .  B. Bdzil 

Appendix E. Calculation of equation (3.14) 
The partial differential equation (2.5) can be transformed into an ordinary 

differential equation which closely approximates its behaviour, and has u, as the 
dependent variable, t as the independent variable, and r as a parameter. This can be 
accomplished by using (3.10), (3.11), (3.12), (3.13) and (2.7). 

We begin by first transforming from the independent variable pair (z ,  r )  to the pair 
( t ,  r ) .  Equation (3.12) is the rate law. Neglecting the radial velocity in (3.12), we get a 
first approximation to t as a function of z and r 

t = F ( z , - z ) + 0 ( ~ 2 ) + O ( S - l ) ,  (E 1 )  

where P( ) is a known function. Differentiating (E 1)  with respect to r,  we get (3.13), 

which, when substituted into (3.12), gives 

and 

Equations (E 3) and (E 4 )  can be used in the operators 

to make the change of variables in (2.5). 
In  the interest of simplicity, we will first present the central streamline (i.e. u, = 0) 

form of (2.5). Using the equations in this appendix and (3.10), (2.5) specialized to the 
central streamline is 

(22- uf) - - 4tufE2D( 1 +a) [8R(y + 1)]-1(1+ t )  + 2tu;Dzj(y + 1)-1 = 0 ( 8 - 2 ) ,  (E 6) dt 

where 8-l is the value of - z i  on the central streamline, and 

We can obtain an approximation to (2.5) away from the central streamline by 
retaining the O ( P )  terms in (2.5) and adding them to (E 6) 

( ;"I du; 
( E2 - u:) - + 4 t ~ f  E'D[R(y + 1)I-l 2: + - 2: (1 + t )  + 2 t ~ : D 3 y  + 

dt 

= D$(r+ ( ~ ; ) ~ f ( t ) / 2  + O(S4) + 0(625-1) + 0(P2), (E 8) 

where (E 9) 

and E2 is given by (E 7). In obtainingf(t), u;, C2 and D have been replaced by their one- 
dimensional values. 

f ( t )  = 2 ( y - t )  ( 1  + t )  [(I + t )  + q y -  t ) l ,  
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Appendix F. Calculation of the flow near the explosivefinert interface 
Although we are not interested in the details of the reactive flow near the charge 

boundary, we must be able to convert equation-of-state information on the confining 
inert into the parameters for our explosive calculation. We will restrict our attention 
to inerts which give strong confinement of the explosive. For such materials, the weak 
shock approximation can be used to get a good first approximation to the inert flow. 

We begin by considering the inert flow. Although it is not a necessary simplification, 
we use a Tait equation of state for the inert. The independent variables will be the 
vertical co-ordinate z and the stream function Y. We measure the particle velocities 
uz in units of the Chapman-Jouguet detonation velocity Dej, the density p r  in units of 
the initial density of the inert pol, and the pressure PI in units of poz DZj. Written in 
terms of these scaled variables, the shock conditions are 

and 

2n$ -1 

z + P +  ? 
n -  -+ 1 

( L ) ' n &  ( n + l  n + l  ) 
2 2n$ 2 &) I = -1+-( -+p+)- l ,  n + l  n + l  

where 6 and n are the constants for the Tait isentrope 

( P  + 6) p^-n = constant. (F 6 )  

P = O(6) .  ( F 7 )  

If we restrict our attention to streamline deflection angles of O(S) ,  then from (F 3 )  and 
(F 5 )  we are led to 

That is, a small deflection angle in the inert is synonymous with a weak shock. 
The governing Euler equations for the assumed planar flow are (Van Dyke 1975) 

and 

where 9 = -Y /poIDe j ,  C2 is the scaled sound speed squared c2/OEj, and r is the lateral 
distance. We assume that the dependent variables can be expanded as 

P = + . , . , 
a, = 6.ii!''+ ..., r = r(o)+6r(')+ ..., 

p^ = P^'O) + 6p^(') + , . . , c^ = em + 6@1) + . . , , 

a* = a;@ + dail) + . . . , ( F  1 3 ) ,  (F 14)  

(F 151, (F 16) 

(F 171, (F 18) 
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and do a regular perturbation solution of (F 8)-(F 12) subject to the shock conditions 
(F 1)-(F 5). A t  zeroth order the solution everywhere in the flow is equal to the shock 
(straight line) state. At first order the differential equations reduce to the wave equation 

and pl) = - p O ) @ o ) q l ) .  
Solving equation (F 19) and applying the shock conditions, we find 

where &) and ail) are functions only of the characteristic co-ordinate 

Since the pressure at  the inert/explosive interface must be continuous, at  the interface 

where t = ( 1  -A)*, po is the initial density of the explosive, and y is the polytropic 
exponent for the explosive. Using this in equation (F23),  we get the tangent of the 
streamline deflection angle along the inert/explosive interface 

-tan (8,) - (1+t)+O(62). 2 u, 
% 
- =  

Therefore, we find that the streamline deflection angle at  the interface changes more 
slowly through the reaction zone than it does in the interior of the explosive. Thus we 
must amend the explosive solution in the vicinity of the charge boundary. 

We will use equations (2.5), (2.7), (2.9) and (2.11) to generate an expression that 
relates the interface shape to the streamline deflection one reaction-zone length into 
the explosive charge. To do this, we assume that when the streamline deflection angle 
is small the dependent variables can be written as 

u, = up) + 6u:l) + . , . , u, = sup) + . . . , 
c = do) + 6d1) + . . . , h = A@) + 6A(’) + . . . , 

(F 271, (F 28) 

(F 29), (F 30) 

(F 311, (F 32) 
dz 
dr 

and D = DCj+0(62),  -s = O(6).  

Doing a regular perturbation analysis of (2.5), (2.7) and (2.9) with z and r as the 
independent variables, at  O(6) we get the equation 
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where t = ( 1  - A ) $ ,  R(*) is the one-dimensional rate, and &:I), &$I) are the particle 
velocities measured in units of Dcj(y+ 1)-l. Although the vorticity is O(6)  in this 
region, it does not appear in this equation. The shock boundary condition, equation 
(2 .11) ,  requires that &jl)(t= 1 )  = 0. At the unperturbed sonic locus (t  = 0), 6f) must 
be bounded. As we proceed into the explosive charge GL1) = 0. 

Equation (F 33) is a partial differential equation in two unknowns. Without 
additional information via other differential equations, we cannot solve for &:I), hi1) 
in this region. However, if we neglect (a&il))/r, since r is usually large, we can integrate 
(F 33) with respect to r ,  to get 

where 

r* is the explosive charge radius, and rm < r* is where the match to our interior 
explosive solution takes place (approximatelj one reaction-zone length into the 
explosive). The velocity Gil)(r*) can be obtained from (F 26), and Gil)(rm) can be found 
with the aid of (5.7), 

which for small ( 6 9 )  is 

Equation (F 34) can now be considered as an ordinary differential equation for $(t) .  
Solving this equation, and requiring that f (  1 )  = 0 and $ ( O )  is bounded, forcesdPto be 

s? = 2Y + 2Y(Y - 1 )  In [(Y - l)/rI, (F 38) 

when the rate of equation (4.5) is used. Therefore, without calculating the details of 
the rather complex rotational flow that exists in the explosive near the explosive/inert 
boundary, we can translate information about the confining inert to the interior 
explosive flow. The value of 6, defined in 5 3, is the tangent of the streamline deflection 
angle at the intersection of the shock and the explosive/inert interface. 

I acknowledge many useful and stimulating discussions with W. C. Davis, Ray 
Engelke, and Wildon Fickett. This work was supported by the U.S. Department of 
Energy and the Air Force Office of Scientific Research. 
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